The Limit of Mean Transformed Rational Approximation on Subsets

Charles B. Dunhami
Computer Science Department, University of Western Ontario,
London, Ontario, Canada
Communicated by E. W. Cheney
Received March 25, 1974

Let X be a compact subset of Euclidean l-space and let \int be the integral on X. Let τ be a continuous function from the real line into the nonnegative real line. For g measurable on X, consider the " τ-norm"

$$
N(g)=\int \tau(g) .
$$

Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\},\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ be linearly independent sequences of real functions on X. Define

$$
R(A, x)=P(A, x) / Q(A, x)=\sum_{k=1}^{n} a_{k} \phi_{k}(x) / \sum_{k=1}^{n t} a_{n+k} \psi_{k}(x) .
$$

Let σ be a continuous mapping of the real line into the extended real line, Define

$$
F(A, x)=\sigma(R(A, x)) .
$$

The approximation problem is: Given f continuous on X, find A^{*} minimizing $N(f-F(A, \cdot))$ over the set

$$
P(X)=\{A: Q(A, x) \geqslant 0 \text { for } x \in X, Q(A, \cdot) \equiv 0 ;
$$

Such a parameter-value A^{*} is called best and $F\left(A^{*}, \cdot\right)$ is called a best approximation with respect to N.
The problem of the existence of best approximations is covered in [1].
Defintion. Q has the zero-measure property if $Q(A, \cdot) \equiv 0$ implies that the set of zeros of $Q(A, \cdot)$ is of measure zero.

Since $R(\alpha A, x)=R(A, x)$ for all $\alpha>0$, any rational which does not have the denominator vanishing identically can be normalized so that

$$
\begin{equation*}
\sum_{k=1}^{m}\left|a_{n+k}\right|=1 . \tag{0}
\end{equation*}
$$

Compatible Norms

Definition. Let s be a subscript. We say that N_{s} is compatible with N if:
((i) There exists a finite set $\left\{M_{1}{ }^{s}, \ldots, M_{p}{ }^{s}\right\}$ of measurable sets such that $M_{i}{ }^{s} \cap M_{j}{ }^{s}$ is empty for $i \neq j$ and $M_{1}{ }^{s} \cup \cdots \cup M_{p}{ }^{s}=X$.
(ii) There exists a corresponding set $X_{s}=\left\{x_{1}{ }^{s}, \ldots, x_{p}{ }^{s}\right\}$ of points such that $x_{i}{ }^{s} \in M_{i}^{s}, i=1, \ldots, p$.
(iii) For any function g on $X, N_{s}(g)=N\left(g_{s}\right)$, where we define

$$
g_{s}(x)=g\left(x_{i}\right), \quad x \in M_{i}^{s}, \quad i=1, \ldots, p .
$$

It is not difficult to see that any " τ-norm" on a finite subset of X has an equivalent compatible "norm." N_{s} could also come from a quadrature formula.

Definition. We say $\left\{N_{k}\right\} \rightarrow N$ if N_{k} is compatible with $N, k=1, \ldots$, and
(iv) For any point x and neighborhood H of x, there is K such that for any $k>K$, there is a $y \in H$ with $g_{k}(x)=g(y)$.

Define $\rho_{k}(f)=\inf \left\{N_{k}(f-F(A, \cdot)): A \in P\left(X_{k}\right)\right\}$.
Definition. A is ϵ nearly best with respect to N_{k} if $N_{k}(f-F(A, \cdot))<$ $\rho_{l i}(f)+\epsilon$ and $A \in P\left(X_{k}\right)$.

Theorem. Let Q have the zero-measure property and let bounded $F(B, \cdot)$ exist. Let $\tau(t) \rightarrow \infty$ as $|t| \rightarrow \infty$ and $|\sigma(t)| \rightarrow \infty$ as $t \rightarrow \infty$. Let neighborhoods be of positive measure. Let $N(f-F(B, \cdot))<\infty$ imply that $f-F(B, \cdot)$ is Riemann integrable. Let $\left\{N_{k}\right\} \rightarrow N$, let A^{k} be ϵ_{k} nearly best with respect to N_{k}, and let $\epsilon_{k} \rightarrow 0$. Then $\left\{A^{k}\right\}$ has an accumulation point and any accumulation point is best with respect to N.

Proof. Define $\|A\|=\max \left\{\left|a_{j}\right|: j=1, \ldots, n\right\}$. Suppose that $\left\{\left\|A^{k}\right\|\right\}$ is unbounded, then by taking a subsequence if necessary, we can assume that \| $\left\|A^{k}\right\| \rightarrow \infty$. By Lemma 2 of [1] there is a closed neighborhood G such that

$$
\mu_{k}=\inf \left\{\left|f(x)-F\left(A^{k}, x\right)\right|: x \in G\right\} \rightarrow \infty
$$

There is a closed neighborhood H in G such that G is a neighborhood for each part of H. We have

$$
\left.N_{k}\left(f-F\left(A^{k}, \cdot\right)\right) \geqslant \int_{H} \tau\left(f-F\left(A^{k}, \cdot\right)\right)\right]_{k} \geqslant \mu(H) \min \left\{\tau(y): j \geqslant \mu_{k}:\right.
$$

and the right-hand side tends to infinity. But

$$
N_{k}(f-F(B, \cdot)) \leqslant \mu(X) \max \{\tau(u):-\eta \leqslant u \leqslant \eta \dot{\}}
$$

where $\eta=\mid f-F(B, \cdot) \|_{\infty}$. Hence near optimality of A^{k} is contradicted. We can, therefore, assume that $\left\{A^{k}\right\}$ is bounded and has an accumulation point A. Assume without loss of generality that $\left\{A^{h}\right\} \rightarrow A$. We claim that $Q(A, \cdot) \geqslant 0$. Suppose not, then there is $\epsilon>0$ and $x \in X$ with $Q(A, x)<-\epsilon$. There is a closed neighborhood J of x such that $Q(A, y)<-\epsilon$ for $y \in J$. For sil k sufficiently large, $Q\left(A^{k}, j\right)<-\epsilon / 2$ for $y \in J$. Applying (iv), we see that $A^{k} \notin P\left(X_{k}\right)$ for all k sufficiently large and we have a contradiction.

We now prove that

$$
\begin{equation*}
N(f-F(A, \cdot)) \leqslant \limsup _{k-x_{0}} N_{h}\left(f-F\left(A^{2}, \cdot\right)\right) \tag{1}
\end{equation*}
$$

Let x not be a zero of $Q(A, \cdot)$ and $\epsilon>0$ be given. We wish to prove that

$$
\begin{equation*}
\left.\mid \tau\left(f(x)-F\left(A^{k}, x\right)\right)\right]_{k}-\tau(f(x)-F(A, x)) \mid<\epsilon \tag{2}
\end{equation*}
$$

for all k sufficiently large. By continuity of τ there is $\nu>0$ with

$$
\begin{equation*}
\tau(n)-\tau(f(x)-F(A, x))|<\epsilon, \quad| u-(f(x)-F(A, x) \mid<x \tag{3}
\end{equation*}
$$

There exists a neighborhood G of x such that $Q(A, y)>0$ for $y \in G$, hence $R(A, \cdot)$ is continuous on G and $f-F(A, \cdot)$ is continuous inte the extended real line on G. By arguments similar to the previous we can show that if $f-F(A, \cdot)$ attains an infinite value on G, then $N_{:}\left(f-F\left(A^{\prime \prime}, \cdot\right)\right) \rightarrow \infty$, giving a contradiction. Hence $f-F(A, \cdot)$ is continucus on G. There is a closed neighborhood H of x contained in G such that

$$
\begin{equation*}
(f(y)-F(A, y))-(f(x)-F(A, x)) \mid<v i 2, \quad y \in H . \tag{4}
\end{equation*}
$$

Now $f-F\left(A^{k} \cdot\right)$ converges uniformly to $f-F(A, \therefore$ on H. so for ali k sufficiently large

$$
\left(f(y)-F\left(A^{k}, y\right)\right)-(f(y)-F(A, y))<v i, \quad y \in H .
$$

By this and (4) we have

$$
\left|\left(f(y)-F\left(A^{k}, y\right)\right)-(f(x)-F(A, x))\right|<\nu, \quad y \in H .
$$

By hypothesis (iv)

$$
\left.f(x)-F\left(A^{k}, x\right)\right]_{k}=f(y)-F\left(A^{k}, y\right), \quad y \in H
$$

and by (3), (2) is satisfied. It follows that $\left.\tau\left(f-F\left(A^{k}, \cdot\right)\right)\right]_{k} \rightarrow \tau(f-F(A, \cdot))$ on all points at which $Q(A, \cdot)$ does not vanish, so we have pointwise convergence almost everywhere. Further $N_{k}\left(f-F\left(A^{k}, \cdot\right)\right)$ is uniformly bounded, so by Fatou's theorem, (1) holds.

Now suppose A is not best with respect to N. Then there is $B \in P(X)$ and $\epsilon>0$ with

$$
N(f-F(B, \cdot))<N(f-F(A, \cdot))-\epsilon
$$

We have

$$
N_{k}(f-F(B, \cdot)) \rightarrow N(f-F(B, \cdot))
$$

since $f-F(B, \cdot)$ is Riemann integrable.
Let $N_{k}(j)\left(f-F\left(A^{k(j)}, \cdot\right)\right) \rightarrow \lim \sup _{k \rightarrow \infty} N_{k}\left(f-F\left(A^{l}, \cdot\right)\right)$; then for all j sufficiently large

$$
N_{k(j)}(f-F(B, \cdot))<N_{l:(j)}\left(f-F\left(A^{k(j)}, \cdot\right)\right)-\epsilon / 2,
$$

contradicting $A^{F(j)}$ being $\epsilon_{k(j)}$ nearly best with respect to $N_{k(j)}$.
A parameter A is called admissible on X if $Q(A, x)>0$ for $x \in X$.
Remark. Let a best parameter to f on X be admissible, then the theorem remains true if we approximate with respect to \bar{N}_{k} with parameter set

$$
\hat{P}\left(X_{k}\right)=\left\{A: Q(A, x)>0, x \in X_{k}\right\}
$$

To establish the remark, we let B at the end of the proof of the previous theorem be admissible on X.

The remark does not imply that an accumulation point A need be admissible on X (see the example at the end of the paper).

Corollary 1. Let the hypotheses of Theorem 1 hold. Let there exist a unique parameter A of best approximation to f with respect to N under the normalization (0) and $Q(A, \cdot)>0$. Then $\left\{A^{k}\right\} \rightarrow A$ and $Q\left(A^{k}, \cdot\right)>0$ for all k sufficiently large.

If the hypotheses of Corollary 1 holds, there exists a best admissible approximation with respect to N_{k} for all k sufficiently large.

Corollary 2. Let the hypotheses of Corollary 1 hold and σ be continuous on an open set containing the range of $R(A, \cdot)$. Then $\left\{F\left(A^{k}, \cdot\right)\right\}$ converges uniformly to $F(A, \cdot)$ and $N\left(f-F\left(A^{k}, \cdot\right)\right) \rightarrow N(f-F(A, \cdot))$.

Without the uniqueness condition of Corollary 1 , the conclusions of the above corollaries may not hold.

Example. Let $X=[0,1]$ and N be the L_{p} norm on $[0,1], p \geqslant 1$. Let N_{k} be based on evaluation at the points $\{1 / k, 2 / k, \ldots,(k-1) / k, 1\}$. Let $f=0$. Let the approximations be a family of ordinary rational functions. There exist $\alpha_{k}>0$ such that $N_{k}\left(-\alpha_{k} / x\right)<1 / k$, hence α_{k} / x is $1 / k$ nearly best. However,

$$
\begin{aligned}
N\left(-\alpha_{k} / x\right)=\alpha_{k} \int_{0}^{1} x^{-p} d x & \left.=\alpha_{k} \log (x)\right]_{0}^{1}=\infty . & & p=1 \\
& \left.=\alpha_{k} x^{1-p} /(1-p)\right]_{8}^{1}=\infty, & & p>1
\end{aligned}
$$

References

i. C. B. Dunham, Best approximation by transformed and constrained rational functions, J. Approximation Theory 10 (1974), 93-100.
2. B. R. Kripke, Best approximation with respect to nearby norms, Numer. Math 6 (1964), 103-105.
3. J. M. Wolfe, Discrete rational l_{d} approximation, Math. Comp. 29 (1975), 540-548.

