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Let X be a compact subset of Euclidean /-space and let | be the integral on
X. Let 7 be a continuous function from the real line into the nonnegative
real line. For g measurable on X, consider the “r-norm”

N(@) = [(e).

Let {¢y,.... b}, {1 ,..0, ¥} be linearly independent sequences of real
functions on X. Define

n

R(A’ X) = P(4, X)/Q(A, X) = Z akqu(‘f)/z an+ki/f"k{—\‘)‘
k=1

=1

Let o be a continuous mapping of the real line into the extended real line.
Define

F(A4, X) = o(R(A, ¥)).

The approximation problem is: Given f continuous on X, find 4* minimizing
N(f — F(4, -)) over the set

P(X)={4:0(4,x) =0for xe X, 0(4, -} = 0.

Such a parameter-value A* is called best and F{4*, -) is called a best approxi-
mation with respect to V.
The problem of the existence of best approximations is covered in [1].

DEeriNtTioN. @ has the zero-measure property if Q(A4, -y == 0 implies that
the set of zeros of Q(4, -) is of measure zero.
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Since R(aA, x) = R(A, x) for all & > 0, any rational which does not have
the denominator vanishing identically can be normalized so that

m

Yl =1 (0)

k=1

COMPATIBLE NORMS

Drrmuirion. Let s be a subscript. We say that N is compatible with N if:

(@) There exists a finite set {M,5,..., M,°} of measurable sets such that
M0 Mpfisempty fori == jand MU - U M * = X.

(i) There exists a corresponding set X, = {x,,..., x,°} of points such
that xfe M5, i = 1,..., p.

(1ii) For any function g on X, N g) = N( g,), where we define
gx) =g(x), xeMs i=1,.,p.

It is not difficult to see that any “r-norm” on a finite subset of X has an
equivalent compatible “norm.” N, could also come from a quadrature
formula.

DEerINITION.  We say {N,} — N if N} is compatible with N, k = 1,..., and

(iv) For any point x and neighborhood H of x, there is K such that for
any k > K, there is a y € H with g,(x) = g(»).

Define pi( f) = inf {N(f — F(4, *)) : A € P(X})}-

DErFINITION. A is € nearly best with respect to N, if Ny(f— F(4, ) <
pif) + € and 4 & P(Xy).

THEOREM. Let Q have the zero-measure property and let bounded F(B, -)
exist. Let 7(t) — co as | t | — oo and | o(t)| — o0 as t — co. Let neighborhoods
be of positive measure. Let N(f — F(B, *)) << oo imply that f— F(B, ") is
Riemann integrable. Let {N,} — N, let A* be €, nearly best with respect to N, ,
and let €, — 0. Then {A*} has an accumulation point and any accumulation
point is best with respect io N.

Proof. Define | 4| = max{| a;|:j=1,...,n}. Suppose that {|| A* |} is
unbounded, then by taking a subsequence if necessary, we can assume that
I A¥1] — oo. By Lemma 2 of [1] there is a closed neighborhood G such that

py, = inf {] f(x) — F(4*, x)| : x € G} — o0.
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There is a closed neighborhood H in G such that G is a neighborhood for
cach part of H. We have

Nf = FOA% ) 2 [ o(f = FOA DL = pH) min (e(5) 2512
.
and the right-hand side tends to infinity. But

N(f — F(B, ) < plX) max {r(u) : —n < u =< 7},

where n = ' f — F(B, ‘)ll.. . Hence near optimality of 4* is contradicted. We
can. therefore, assume that {4*} is bounded and has an accumulation point 4.
Assume without loss of generality that {4*} — A. We ciaim that O(4, -} .= 0.
Suppose not, then there is € > 0 and x € X with (4, x) < —e. There is a
closed neighborhood J of x such that (4, 1) < —¢ for yeJ. For zll &
sufficiently large, Q(4%, 1) << —¢/2 for yeJ. Applving {iv), we see that
A* ¢ P(X,) for all &k sufficiently large and we have & contradiction.
We now prove that

Nf— F(4. ) < lim sup N, (f — FAR, ). th
Let x not be a zero of O(A4, -) and € > 0 be given. We wish to prove that
Pr(fx) — F(AY, )] — 7(f(x) — F(4, )] <« {2)
for all k sufficiently large. By continuity of = there is v > 0 with
L) — (flx) — F(4, x)| <<, hw = (f(x) - FA x) < (3)

There exists a neighborhood G of x such that Q(4, v} > 0 for y € G, hence
R(A, -} is continuous on G and f— F(4, ) is continuous intc the extended
real line on G. By arguments similar to the previous we can show that if
f— F(A, ) attains an infinite value on &, then N (f— F(4% ) — o0,
giving a contradiction. Hence f — F(A4, -) is continucus on G. There is a
closed neighborhood H of x contained in G such that

(F(0) = F(A,3) — (F() — F(A, ) < wi2.  yeH (4

Now f — F(4% ) converges uniformly to /' — F(4.-) on H. so for all k
sufficiently large

() — FA% ) — (f(3) — F(A, ) <vi2,  yei
By this and (4) we have

{f(yy — F AR v) — (f(x) —F4, x)l <v, rei.
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By hypothesis (iv)
fx) = F(A*, 0L, = f(y) — F(4%, ), yeH

and by (3), (2) is satisfied. It follows that 7(f' — F(A4*, ‘D], — 7(f — F(4, ))
on all points at which Q(4, -) does not vanish, so we have pointwise con-
vergence almost everywhere. Further N (f — F(4*, -)) is uniformly bounded,
so by Fatou’s theorem, (1) holds.

Now suppose 4 is not best with respect to N. Then there is Be P(X) and
€ > 0 with

N(f— F(B, ")) < N(f— F(4, ")) — «.
We have
N{f — F(B, ")) —~ N(f — F(B, "))

since f — F(B, ) is Riemann integrable.
Let Nyo(f — F(4*9, ) — lim supy_.. N{f — F(4*%, -)); then for all j
sufficiently large

Ney(f — F(B, -)) < Ny (f — F(AM9, +)) — ¢/2,

contradicting A*Y) being €, nearly best with respect to N, .
A parameter 4 is called admissible on X if Q(A4, x) > 0 for x e X.

Remark. Let a best parameter to f on X be admissible, then the theorem
remains true if we approximate with respect to ¥, with parameter set

P(X) ={4:0(4,x) >0, xe X;}.

To establish the remark, we let B at the end of the proof of the previous
theorem be admissible on X.

The remark does not imply that an accumulation point 4 need be admis-
sible on X (see the example at the end of the paper).

COROLLARY 1. Let the hypotheses of Theorem 1 hold. Let there exist a
unique parameter A of best approximation to f with respect to N under the
normalizarion (0) and Q(A4, *) > 0. Then {A*} — A and Q(A4*, ) > 0 for all k
sufficiently large.

If the hypotheses of Corollary 1 holds, there exists a best admissible
approximation with respect to N, for all & sufficiently large.

COROLLARY 2. Let the hypotheses of Corollary 1 hold and o be continuous
on an open set containing the range of R(A, ). Then {F(A*, -)} converges
uniformly to F(A4, -) and ]\i(f — F(4*, ) — N(f — F(4, *)).
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Without the uniqueness condition of Corollary 1, the conclusions of the
above corollaries may not hold.

Exampre. Let X =0, 1] and N be the L, norm on {0, 1], p = 1. Let
N, be based on evaluation at the points {1/k, 2/k,..., {(k — 1)/k, 1}. Let f = C.
Let the approximations be a family of ordinary rational functions. There
exist «; > 0 such that Ny(—a./x) << l/k, hence oy/x is 1/k nearly best.
However,

1
N(—opfx) = o, JO XPdx = a;log ()} = cc. p=1

-

i

= a7l — ) = =,

™
\
.
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